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I.  INTRODUCTION 

The general problem of coupling through apertures has many specific 

applications, such as apertures in a conducting screen, waveguide-fed 

apertures, cavity-fed apertures, waveguide-to-waveguide coupling, waveguide- 

to-cavity coupling and cav*ty-to~cavity coupling. The literature on these 

problems is extensive. Many books, of which [1] to [3] are typical, dis- 

cuss the problem and give references to some of th«s literature. 

This report formulates the problem in terms of a moment solution of 

the operator equation. An application of the equivalence principle sepa- 

rates the problem into two parts, namely, the regions on each side of the 

aperture. The only coupling is through the aperture, whose characteristics 

can be expressed by aperture admittance matrices, one for each region. These 

admittance matrices depend only on the region being considered, being inde- 

pendent of the other region. The aperture coupling is then expressible as 

the sum of the two independent aperture admittance matrices, with source 

terms related to the incident magnetic field. This result can be inter- 

preted in terms of generalized networks as two n-port networks connected in 

parallel with current sources. The resultant solution is equivalent to an 

n-term variational solution. 

Since the problem is divided into two mutually exclusive parts, one 

can separately solve a few canonical problems, such as apertures in con- 

ducting screens, in waveguides, and in cavities, and then combine them in 

the various permutations mentioned above.  Computer programs can be de- 

veloped for treating broad classes of canonical problems, such as apertures 

of arbitrary shape in conducting planes, in square waveguides, and in rec- 

tangular cavities. Such programs can then serve as broad and versatile 

[1] R. E. Collin, "Field Theory of Guided Waves," McGraw-Hill Book Company, 
New York, 1960. 

[2] R. F. Harrington, "Time-Harmonic Electromagnetic Fields," McGraw-Hill 
Book. Company, New York, 1961. 

[3] N. Amitay, V. falindo, C. P. Wu, "Theory and Analysis of Phased Array 
Antennas," Wiley-Interscience, New York, 1972. 
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Fig. 1. The general problem of two regions 

coupled by an aperture. 
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tools for designing electromagnetic networks with aperture coupling. 

II. GENERAL FORMULATION 

Figure 1 represents the general problem of aperture coupling between 

two regions, called region a and region b. In region a there are impresoed 

sources J , tt , and region b is assumed source free. The more general case 

of sources in both region a and region b can be treated as the superposition 

of two problems, one with sources in region a only, plus one with sources in 

region b only. Each region of Fig. 1 is shown to be bounded by an electric 

conductor, although other types of electromagnetic isolation may be used. 

Region a is shown closed and region b is shown open to infinity, although each 

region may be open or closed. The equivalence principle [2, Sec. 3-5] is used 

to divide the problem into two equivalent problems, as shown in Fig. 2. In 
1  i 

region a, the field is produced by the sources J , M , plus the equivalent 

magnetic current 

M * n x E (1) 
*v    «te    *** 

over the aperture region, with the aperture covered by an electric con- 

ductor.  In region b, the field is produced by the equivalent magnetic cur- 

rent -M over the aperture region, with the aperture covered by an electric 

conductor. The fact that the equivalent current in region a is +M and that 

in region b is -M ensures that the tangential component of electric field 

is continuous across the aperture. The remaining boundary condition to be 

applied is continuity of the tangential component of magnetic field acrose 

the aperture. 

The tangential component of magnetic field in region a over the aper- 

ture, denoted IT , is the sum of that due to the impressed sources, denoted 
i a 

H , plus that due to the equivalent sources M, denoted H.QO, that is 

£ - g£ + HJQP (2) 
i    a 

Note that H. and H(M) are both computed with a conductor covering the 

aperture. A similar equation holds for region b, except that the equiva- 

lent sources -M are the only sources. Hence, the tangential component of 

magnetic field in region b over the aperture is 

H° = H°(-M) = - H°(M) (3) 
A*t   <wt  w       "*t 
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(o) EQUIVALENCE FOR  REGION a. 

CONDUCTOR 

REGION b 

(b) EQUIVALENCE FOR REGION b. 

Fig. 2. The original problem divided into two 

equivalent problems. 

-4- 



where H (M) is computed with a conductor covering the aperture. The 

last equality in (3) is a consequence of the linearity of the H operator. 

The true solution is obtained when H* of (2) equals H~ of (3), 

H*(M) + R*(M) « - H* 
«t '•' -ft **    *«t 

or 

(4) 

This is the basic operator equation for determining the equivalent mag- 

netic current M. 

If (4) were satisfied exactly, we would have the true solution. 

We use the method of moments [4] to obtain an approximate solution. De- 

fine a set of expansion fractions {M , n-1,2,.,.,N}, and let 
«A#l 

M-I VM 
n«n (5) 

where the coefficients V are to be determined. Substitute (5) into (4) 
n 

and us' the linearity of the H operators to obtain 

y V H*(M ) + y V H*(M ) « - H* 
*• n«*t **n L n*t «*n «*t 
n n 

(6) 

Next, define a symmetric product 

<A,B> B ds (7) 

apert. 

and a set of testing functions {W , n-1,2,...,N}, which may or may not be 

equal to the expansion functionr  We take the symmetric product of (6) 

with each testing function W , and use the linearity of the symmetric 

product to obtain the set of equations 

y V <W , H*(M )> + y V <W ,H^(M )> - - <W ,H*> (3) L    n m  t n    L    n m t n       m t 
n n 

m«l,2,...,N. Solution of this set of linear equations determines the 

coefficients V  and the magnetic current M according to (5). Once M 

is known, the fields and field-related parameters may be computed by 

standard methods. 

[4] R. F. Harrington, "Field Computation by Moment Methods," Macmillan 
Company, New York, I960. 
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The above solution can be put into matrix notation as follows: 

Define an admittance matrix for region a as 

[Ya] = [<-Wm,H
a(Mn)>]NxN (9) 

and an admittance matrix for region b as 

[Ybj - [<-Wm,H
b

t(Mn)>]NxN (.0) 

The minus signs are placed in (9) and (10) on the basis of power con- 

siderations. Define a source vector 

fl " ^VHt>]Nxl (I« 

and a coefficient vector 

* * [
VN*I (12> 

Now the matrix equation equivalent to equations (8) is 

[Ya + Ybj$ - I1 (13) 

This can be interpreted in terms of generalized networks as two networks 

[Ya] and [Yb] in parallel wi 

The resultant voltage vector 

[Y ] and [Y ] in parallel with the current source I , as shown in Fig. 3. 

V = [Ya + Yb}~1ii (14) 

is then the vector of coefficients which give M according to (5). 

It is important to note that computation of [Y ] involves only region 

a, and computation of [Y ] involves only region b. Hence, we have divided 

the problem into two parts, each of which may be formulated independently. 

Once [Y] is computed for one region, it may be combined with [Y] for any 

other region, making it useful for a wide range of problems. For example, 

the same aperture admittance matrix for radiation into half-mace would be 

useful for plane-wave excitation of the aperture, waveguide excitation, 

and cavity excitation. 

-7- 
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Fig. 4. The adjoint problem for 

determining H at r . 
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I. 

III. LINEAR MEASUREMENT 

A linear measurement is defined as a number which depends linearly 

on the source. Examples of linear measurements are components of the 

field at a point, voltage along a given contour, and current crossing a 

given surface. Measurements made in region b will depend linearly only on 

the equivalent current -M. Measurements made in region a will depend 
*"*       i  J. linearly on the Impressed sources J,, M^, as well as on the equivalent cur- 

rent M. We now illustrate these concepts with a particular example. 

Consider the measurement (computation) of a component H of magnetic m 
field at a point r in region b.  It is known that this component can be 

obtained by placing a magnetic dipole KÄ. at r , and applying the reciprocity 

theorem to its field and to the original field [2, Sec. 3-8]. The original 

field in region b is given by the solution to Fig. 2b. The problem involving 

the magnetic dipole, called the adjoint problem, is shown in Fig. 4. Appli- 

cation of the reciprocity theorem to these two cases yields 

H K£ - -  [ mm    J M • rf^s (15) 

apert. 

Here H" i3 the magnetic field from K£ in the presence of a complete con- 

ductor, and H is the component in the direction of K£ of the magnetic 
m «*m 

field at r due to -M in the presence of a complete conductor. To evaluate 
**a A*- 

(15), substitute for M from (5) and obtain 

Htt - I  V <-M ,rfS (16) 
mm L    n  n n 

This can be written in matrix form as 

H KÄ, * I^V (17) m m 

where 1    is the transpose of a measurement vector 

r ■ i<-\-^i <18> 

Note that the elements of "t    are similar in form to those of I given 

by (11), except that -M replaces W . The minus sign difference reflects 

-9- 
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the fact that the equivalent source in region b is -M, in contrast to 

that In region a which is 4M. Now substitute (14) into (17) to ob- 

tain 

H U    - T[Ya + YV1
?
1 (19) m m 

If the magnetic dipole Is of unit moment, then (19) gives H at r 

directly. 

Every linear measurement in region b will be of the form (19). 

For example, if a component of E at r were desired, we would place an 

electric dipole at r and apply reciprocity. In general, a linear 

measurement Involves applying reciprocity to the original problem and 

to an adjoint problem. A determination of the sources of the adjoint 

problem is a part of the formulation of the problem. 

If a linear measurement is made In region a, it will involve a 

contribution from the impressed sources J , M, added to that from the 

equivalent sources M. For example, instead of (19) we would have 

HKH = H^U + ffY* 4- YV1
? (20) 

mm   mm 

where H is the magnetic field from J , M in the presence of a complete 

conductor. Also, in region a we would define the measurement vector to 

be 

instead of (18), because the equivalent sources are +M in region a in 
*" i 

contrast to -M in region b. Note that it is the difference field H-H 

in region a (due to M) that is directly analogous to the transmitted 

field H in region b (due to -M). 

IV,  TRANSMITTED POWER 

A quadratic measurement is one which depends quadratically on the 

sources. Examples of quadratic measurements are components of the Poynting 

vector at a point, power crossing a given surface, and energy within a 

given region. A particular quadratic measurement of considerable interest 

-10- 



is the power transmitted through the aperture, which we now consider. 

The complex power P transmitted through the aperture is basically 

P. -  II  E x H • n ds 
***     **■     4M^ 

apert. 

(22) 

where the asterisk denotes complex conjugate. Substituting from (1), we 

have 

P ■ [    M * H*ds 
t   J J   **■ — 

(23) 

apert. 

This involves only the tangential component of H. which in region b we 
b 

denoted by H (-M)« For M we use the linear combination (5) and obtain 

HVM) * - I V H?CK ) (24) 

Substituting this for H and (5) for M into (23), we obtain 

P - - I! V V* ff   M • H^*(M )ds (25) 
t    L L   m n II   *»m  «*t *«n m n        » * m n 

apert, 

If M are real, the conjugate operations can be taken outside the inte- 

grals. Moreover, if M ■ W (Galerkin's method), then the negative of 

the integrals in (25) are Y  as defined by (10), and 
mn 

p «j y vv* Y1 

t  ** *• m n l 
m n 

This can be written in matrix form as 

* „b* 
nn 

(26) 

~,  b,*-t* 
P - V[Y ] V (27) 

Note that this is the usual formula for power into network [Y ] of Fig. 3. 

V.   APERTURES IN PLANE CONDUCTORS 

Consider a conducting plane covering the z»0 plane except for an 

aperture, as shown in Fig. 5. The two regions z>0 and z<0 are identical 

half spaces, and hence their admittance matrices are the same. Therefore, 

we let 

-11- 
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Fig. 5. Aperture in a plane conductor. 
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[Ya + Yb] - 2[Yh8] (28) 

where [i ] denotes the aperture admittance for the aperture opening into 

half space, say z>0. When the aperture Is covered by a conductor, the 

z«0 plane is a complete conducting plane, and image theory applies. The 

magnetic current expansion functions are on the surface of the z*0 plane. 

Their images are equal to them and are also on the z-0 plane [2, Sec. 3-6]. 
ha 

The result is that [Y* ] is the admittance matrix obtained using expansion 

functions 2M radiating into free space everywhere. This problem is dual 

to that for the impedance matrix of a plane conductor, a problem considered 

recently in the literature [5]. 

The original excitation of the aperture is by the impressed sources 

J , M in the region z<0. The impressed field H used in the operator 
*" ~ 1  i 
equation (4) is the tangential magnetic field due to J , M with the aper- 

ture covered by a conductor (Fig. 2a). In this case the z«0 plane is a 

complete conductor, and image theory again applies. The result is that 

the tangential component of H over the z=0 plane when it is covered by a 

conductor is just twice what it is for the same sources in free space. 

Hence, 

HJ - 2j£° (29) 

where H  is the tangential component of the magnetic field over the 
"** i  i 

aperture due to the sources j[ , H In free space. The components of 

the excitation vector I defined by (11) are now 

I* - 2 ff   W • H*°ds (30) 

apert. 

where W is the mth testing function. 
*«m 

A case of special interest is that of plane wave excitation. A 

unit plane wave is given by 

[5] N. N. Wang, J. H. Richmond, M. C. Gilreath, "Sinusoidal Reaction 
Formulation for Radiation and Scattering from Conducting Surfaces," 
IEEE Trans, on Antennas and Propagation, vol. AP-23, No. 3, pp. 376- 
382, May 1975. 

-13- 



where u. is a unit vector specifying the direction of K , k, is the 

propagation vector of magnitude 2TT/X and pointing in the direction of 

propagation, and £ is the radius vector to an arbitrary field point. 

These vectors are shown in Fig. 5. The components (30) of the plane- 

wave excitation vector are then 

P1 . 2 
m 

~ih  '  r 
W • u, e "a  "*ds (32) 
MID  «i 

apert. 

The symbol P has been used for this particular vector to distinguish 

it from the more general excitation vector (30). 

Similar simplifications apply to the adjoint (measurement) 

problem. For the evaluation of a component of magnetic field at a 

point r , a magnetic dlpole KJt is placed at the measurement point r . 
**m "**m **m 

This radiates in the presence of a complete conductor c»ver the z»0 

plane, and hence, analogous to (29), we have 

gj - 2j£° (33) 

Here H7 denotes the tangential component of H over the aperture from 

Kl   when the z«0 plane is covered by a conductor, and H~ denotes, that 

from K£ when it radiates into free space. The components of the measure- 

ment vector l defined by (18) are now 

I •* - 2 
n 

M • H*°ds (34) 
~n  —t 

apert. 

where M is the nth expansion function. 

A case of special interest is that of far-field measurement. 

This is obtained by a procedure dual to that used for radiation and scat- 

tering from conducting wires [6].  To obtain a component of H on the 

radiation sphere, we take a source K«. perpendicular to r and let r ■+ ». 

[6] R. F. Harrington, "Matrix Methods for Field Problems," Proc. IEEE, 
vol. 55 No. 2, pp. 136-149, February 1967. 
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At the same time we adjust YJL    so that It produces a unit plane wave 

in the vicinity of the origin. The required dipole moment Is given *-■/ 

KA 
-jo)e 
4trr 

m 

-jkr 
m 

(35) 

and the plane-wave field it produces in the vicinity of the origin is 

-jk    • r 
u    e «m (36) 

Here u is a unit vector 1P the direction of n°, k is the propagation 

vector, and r is the radius vector to an arbitrary field point. Again 

these vectors are shown In Fig. 5. The components (34) of the far-field 

measurement vector are then 

*m 
- 2 w M 

r 
An» 

ds (37) 

apert. 

The symbol r    is used for this particular measurement vector to dis- 

tinguish it from the more general measurement vector (34). The far- 

zone magnetic field is now given by (19) with K2, given by (35), 
,   . in 

i - j? , I = ? , and the aperture admittance given by (28). Hence 

H _ ZJiS£ e~
Jkr° ?m[Yh8f ¥ 

m  oirr 
m 

(38) 

The usual two radiation components H. and H, are obtained by orienting 
ö     <p 

KÄ in the 6 and $ directions, respectively. 

A parameter sometimes used to express the transmission character- 

istics of an aperture is the transmission cross section T.  It is de- 

fined as that area for which the Incident wave contains sufficient power 

to produce the radiation field H by omnidirectional radiation over half 

space. For unit incident magnetic field, this is 

27rr2|H |2 

m1 m1 (39) 

-15- 



Substituting fron (38), «e obtair. 

X    *» 

2 2 
hi e 
32ir 

118,-1*112 r* (40) 

Note that T depends upon the polarization and direction of the incident 

wave (via P ), and upon the polarization measured and direction to the 

measurement point (via Y). 

Another parameter used to express the transmission characteristics 

of an aperture is the transmission coefficient T, defined as 

trans. 
P. 
inc. 

(41) 

where P «._„__    is the time-average power transmitted by the aperture, circuits • 
and P.        is the free space power incident on the aperture.    The inci- 

dent power is 

P.       =n S cos eJ inc. inc. 

where r\  ■ /y/e is the intrinsic impedance of free space, S is the 

aperture area, and 9.  is the angle between k, and n. The trans- 

mitted power is 

(42) 

P mo - Re(P.) 
trans.      t 

where Re(P ) denotes the real part of P , given by (27) with 

[Yb] - [Yh8]. Hence 

(43) 

T - 
n S cos 9 

inc. 

Re(?[Yh8]*v) (44) 

.«Jote that T depends on both the direction of incidence and on the 

polarization of the incident wave. 

Finally, because of symmetry about th». z-0 plane, the difference 

field H-H^ which exists in the region z<0 is simply related to the 

transmitted field which exists in the region z>0. The difference field 

-16- 



in the region z<0 is produced by an equivalent current M on a plane 

conductor over the z-0 plane. By image theory, it is also the field 

produced in the region z<0 by the source 2M in free space. As noted 

earlier, the transmitted field in the region z>0 is produced by the 

source -2M in free space. Hence, the difference field in the region 

z<0 and the negative of the transmitted field in the region z>0 are 

both produced by the same magnetic current 2M radiating in free space. 

In other words, the difference field is the negative of the analytic 

continuation of the transmitted field into the region z<0. This 

applies to electric fields as well as to magnetic fields. 

VI. WAVEGUIDE-FED APERTURES 

Consider now a uniform waveguide feeding an aperture in a con- 

ducting plane, as shown in Fig. 6. In general, the aperture may be of 

different size and shape than the waveguide cross section. The half- 

space region z>0 is the same as in the previous problem, Fig. 5, and 

the analysis of the preceding section applies. An analysis of the 

waveguide region is given below. 

Let the excitation of the waveguide be a source which produces a 

single mode, of unit amplitude, incident on the aperture. This mode 

(usually the dominant mode) is denoted by the index o. The field tan- 

gential to the z-direction can then be expressed in modal form as 

[2, Sec. 8-1] 

E B 

-Y 
r. 

z 
3 e 

St 
sr Y e o u 

Mt 

Y,z 
* I Si 

(45) 
Y.z 

'o r       i 
e   u x e - I T.YJ  e   u x e 

~z  -'o  j i i     *z  «• 

It is assumed that all modes, TE and TM, are included in the summation. 

The y. are modal propagation constants 

Yi * ' 

* j3± - jk /r^ ujrj7      x < \± 
(46) 

v,   c^ - k± /l - (X^X)* X > x1 

-17- 
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Fig. 6. Waveguide-fed aperture in a conducting 

plane. 
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where A.  is the i-th mode cut-off wavelength, and k. * 2TT/X.  is the 

i-th code ci 

admittances 

i-th code cut-off wavenumber. The Y are the modal characteristic 

TE modes 

TM modes 

(47) 

r is the reflection coefficient for the o-th mode, and r, is the 
o i 
complex amplitude of the -z traveling component of the i-th mode. 

The e. are normalized modal vectors, so that the modal orthogonality 

relationships are 

Si 
guide 

e.ds 
•a 

1 = j 

(48) 

where the integration is over the waveguide cross section. 

To evaluate the aperture admittance (9) in the waveguide region, 

we consider a single expansion function M on the z«0 plane in the 
**n 

waveguide region. The tangential field produced by M will be of the 

form (45), except that there is no incident wave. Hence, this field 

is 

Y<z 

£<V -\  Ani e * Si 

£%?  = " I  AniYi eV ä. * £ 
(49) 

where the A  are modal amplitudes. At z=0 we have 

M 
*-n z=0 

I A _u x e. 
ni-'-a  *i 

(50) 

Multiply each side of this equation scalarly by u x e. and integrate 

over the waveguide cross section, obtaining 

M • u x e.ds » J A .  !   (uxe.)*(ux e,)ds 
*»n  -z  *»j    ^nijj   «x  *4    *<z  «j 

guide ~    guide 

(51) 
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By orthogonality (48), all terms of the summation are zero except the 

i«j term. Hence, 

ni If  «. u * e.ds (52) 

apert. 

We have replaced the integral over the waveguide cross section by one 

over the aperture, since M exists only in the aperture region. The 
>t/tL 

elements of the aperture admittance matrix (9) are now given by 

Yw8 . _ 
mn 

W • Ha(M )ds 
*»m  ■»«* «*n 

(53) 

apert. 

where the superscript wg denotes waveguide. The H of (53) is given by 
**t 

the second equation of (&9) evaluated at z«0, or 

fwg 
mn |AniYi [ w u x e.ds (54) 

apert. 

Now define the constants 

B . -      W • u x e.ds 
mi   )\       <m.     "G,     <*i. 

(55) 

apert. 

which are similar in form to the A  of (52). The elements (54) then 

are given by 

?wg 
mn I \,<B .I. hi mi i 

(56) 

WKn 
Hence, all elements of the waveguide admittance matrix [Y *] are linear 

combinations of the modal characteristic admittances Y . For Galerkin's 

method, W - M and the A  and B . are equal. 
«*n  «»n       «ii.    *ni 

We next evaluate the equ valent magnetic current M, given by (5). 

Th<; incident field is given by the first term on the right-hand side 

of (45). When the aperture is covered by a conductor, the waveguide 

is terminated by a conducting plane. According to image theory, the 

tangential magnetic field at z«0 is then just twice the incident wave, 

or 
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H7 - 2£  u x e (57) 

This is the H used in. (11) to evaluate the excitation vector I . Hence, 

the components of the excitation vector are 

«*m 
I1 - 2Y  I I   W 

apert. 

The total aperture admittance matrix Is 

u x e ds 2Y B 
o mo 

(58) 

[Ya + YD] [Ywg + yh8] (59) 

WE Hs 
where [Y B] is the waveguide aperture admittance and [x    ] is the half- 

space aperture admittance. The coefficient matrix V is given by (14) 

with the admittance matrix given by (59), or 

[YWg + Y 
hs,-l^i 

(60) 

Finally, the equivalent magnetic current M is given by (5) where the 

coefficients V are the components of V. 

Once M is found, the modal amplitudes r in (45) can be evaluated 
Mr 1 

from (1) and the orthogonality properties of the modes. From (1) and 

(45), we have 

M ■ u x E 
z-0 

u 
*-z 

e 
•o i 

l"*z  ~i 
(61) 

Now multiply each side scalarly by u x e and integrate over the wave- 

guide cross section. By the orthogonality relationships (48), all terms 

of the summation vanish except the term i-*j. The result is 

] + r 
M u  x ads 

~z  ~i 
(62) 

guide i +  0 

Here the integration over the guide can be changed to that over the 

aperture because M » 0 except in the aperture. Substituting for M 

from (5) into (62), and using the definitions (52), we have 
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) v A - l + r 
** n no      o n 

(63) 

7vA=r, no 
^ nni   i n 

Finally, by defining modal measurement vectors as 

\ '  [AniW <"> 

and using (60), we can write (63) as 

1 + T - A [YWg + I118]"1!1 (65) 

and, for i 4  0, 

Fi A^Y*8 + Y118]'1!1 (66) 

The parameter of most interest is F , the reflection coefficient of the 

incident mode. This is often expressed in terms of an admittance 

Yap = ITT2 Yo <67> 
o 

which is the equivalent aperture admittance seen by the incident mode. 

The region z>0 for waveguide-fed apertures is the same half-space 

region as existed in the previous problem of an aperture in a conducting 

plane. Hence, evaluation of the fields in terms cf M in this region is 

done the same way as in Section V. For example, the u cociponent of the 

far-zone magnetic field at a point r is given by 
■Mil 

H   - jlS£ e"
Jkr,B IV8 + Y*18]-1?1 (68) m     «nrr 

m 

which is  (38) with the term  ^Y118]"1?1 replaced by (60).    The excita- 

tion vector I   has elements given by (58), and the far-field measurement 

vector P    has elements given by (37).    The power gain pattern is the ratio 

of the radiation Intensity in a given direction to the radiation intensity 
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which would exist if the total power P were radiated uniformly over half 

space, or 

2irr2n|H |2 

m " m1 

Re(Pt) 

Subp*-»,tuting for H from (68), we have 
m 

2 2 as e 

(69) 

8irRe 
J_ |f»[Ywg + Yhsrlti| (70) 

where P is given by (27). Note that this gain is a function of the 

H component measured, as well as direction to the field point. 

VII. DISCUSSION 

A general roraiulation for aperture problems using the method of 

moments has bäen given. The solution is expressed in terms of aperture 

admittance matrices, one fo». each region. While the exposition has 

been written in terms of a single aperture the formulation applies 

equally well to multiple apertures. The extension of the theory to 

several regions is also relatively straightforward. An example of 

this more general case i.z  many waveguides radiating into half space, a 

problem treated by Galindo and Wu [3]. Another example is a coaxial line 

feeding a cavity, which in turn radiates into half space through an aper- 

ture. In this case the generalized network equivalent would be a network 

representing the cavity, connected through some ports to a network repre- 

senting the coaxial line, and connected through other ports to a network 

representing half space. 

Explicit formulations have been given for two problems, that of an 

aperture in a conducting plane with plane-wave excitation, end that of a 

waveguide feeding an aperture in a conducting plane, General computer 

programs have been developed for rectangular apertures in conducting 

planes, and for rectangular apertures in rectangular waveguides. These 

programs will be described in future reports. It is also planned to 

apply the general theory to develop computer programs for rectangular 
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apertures in rectangular cavities. We will then have programs which can 

be used for computing the behavior of rectangular apertures coupling two 

regions which are any permutation of these three cases. Other applica- 

tions of the general theory, such as to apertures and cavities of arbitrary 

shape, and to multiple aperture problems, are contemplated for future work. 
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